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or more briefly as since Tij = Tii and Pij = Pii and where ~Ulk } is a row

[Tz,] [a,Kl = 7K2[~iil[ox] (45)
matrix. Postmultiply (4) by [ai~ ], premultiply (3) by

~u,~}, and subtract to get

(YK’ – 7R’) {ajK] [~zjl[w] = 0. (48)

(46)
When VK2 +VE2, (5) gives

Take the transpose of (2) to get NN

or

~am-] [~ij] = -y#{a,~} [piiJ,

upon development of the matrix product. This proves

(47) the orthogonality of the eigenvectors.

Coupling Through an Aperture Containing an

Anisotropic Ferrite*
&

DONALD C.

Summary—Coupling through an aperture containing anisotropic

ferrites is investigated theoretically by a simple extension of Bethe’s

small-hole coupling theory to include the dipole moment of the body

in the aperture. The magnetic dipole moment of the ferrite body is

ordinarily a vector but becomes a tensor upon the application of a

magnetostati: field. This new theory is applicable to any situation
where Bethe’s small-hole coupling theory is valid. Experimental

verification was quite satisfactory and was obtained on two Bethe-

hole type couplers: one with the waveguides parallel, and the other
with the waveguides perpendicular.

INTRODUCTION

T

HE THEORY of coupling through small windows

was formulated by Bethe more than a decade

ago.1 Initially, he found that the amplitudes of the

modes excited in a waveguide by a window were pro-

portional to

where field 1 is the excited field, field 2 is a normal mode

of the guide, and ~i is the inward normal. Later, he

evaluated the integral over the window by developing a

lumped-constant theoryz for small windows and then

applied this lumped-constant theory to side windows3

in waveguides.

* Manuscript recei~,ed by the PGMTT, November 7, 1956. This
work was supported by the U. S. Navy at the [Tniv. of Calif. under
contract N7-ONR-29529 and is based on a thesis submitted in partial
fulfillment of the requirements for the Ph.D. degree, Dept. of Elec.
Eng-., Univ. of Calif., 1956.

t Lockheed Aircraft Corp., Sunny
1 H. A, Bethe, “Formal Theory of ‘

Section. ” M.I.T. Rad. Lab. ReD. 43-26: M&ch 16, 1943. -

vale, Calif.
Wave~uides of Arbitrarv Cross

2 H. A. Bethe. ‘{Lum~ed Co&tants for Small Ir’ises. ” M. I.T. Rad.
Lab. Rep. 43-22; Marcfi 24, 1943.

8 H. A. Bethe, “Theory of Side Wkdows in Wal,e Guides, ” M.I. T.
Rad. Lab, Rep. 43-27; April 4, 1943.

STINSONt

Bethe’s coupling theory depends upon his lumped-

constant theory for small windows, which in turn de-

pends upon replacing the excitation caused by the

window by a quantity which is proportional to the fol-

lowing parameters: 1) frequency; 2) the normal electric

or tangential magnetic field (exciting field) which would

exist at the center of gravity of the window if the win-

dow were replaced by a solid metal wall; 3) the corre-

sponding fields (induced fields) of the normal modes

which are excited by the window; and 4) lumped con-

stants (polarizabilities) which are functions only of the

shape and dimensions of the window. The basis of his

lumped-constant theory depends upon the fact that the

excitation of the window can be replaced by “equiva-

lent” electric and magnetic dipole moments. These

“equivalent” electric and magnetic dipole moments lead

him to consider the polarizabilities (which are defined as

the “equivalent” dipole moments per unit incident

field) as the true lumped constants of the window. This

is logical since a window may act as either an inducti>~e

or capacitive element, depending upon its location and

the propagating mode in the waveguide.

Since his coupling theory applies only to cases where

the window and the waveyuides are filled with the same

isotropic and homogeneous material, it is the purpose of

this paper to extend his theory to include cases where

the window is completely filled with an anisotropic fer-

rite. The ferrite involved is anisotropic in the sense that

its permeability becomes a tensor upon the application

of a magnetostatic field. This extension will be made by

adding the ‘(equivalent” magnetic dipole moment of the

ferrite to that of the window.
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DIPOLE MOMENTS

The ferrite in the window will affect both the electric

and magnetic dipole moments. It is assumed that the

isotropic permeability of the ferrite is real and unity

for microwaves, and that the dielectric constant is dif-

ferent from unity. The anisotropic permeability of the

ferrite is a tensor and is given by expressions in the

Appendix. Further, it is postulated that the dipole mo-

ment of the filled aperture can be replaced by two other

dipole moments: one to account for the aperture itself

and the other to account for the material in the aper-

ture. From Bethel it is known that the “equivalent” di-

pole moments of the empty window are given as

— IIw = m]HotI + 3Tt2110mFz (la)

am = 606%. EO (lb)

where COis the electric inductive capacity of free space;

ZO, no are the fields that would exist at the center of

gravity of the window if the window were replaced by a

metal wall; and ml, ~2, and (P are the magnetic and

electric polarizabilities, respectively.

Since the material in the window introduces a mag-

netization and a polarization, assume that the ‘(equiva-

lent” dipole moments of the body in the window are

given as

~ b = ~@.fOz? + ~2kfOd72 (2a)

~b = 6%.7. (2b)

Eqs. (2a) and (2b) are deduced by noting that, in

general, the electric or magnetic dipole moment of a

material is the product of its volume and the polariza-

tion or magnetization. Since the polarizabilities ml, ~z,

and (P have the dimensions of a volume and depend upon

the shape of the window, it is assumed that the volume

of the material can be replaced by the polarizabilities of

the window when the material is located in the window.

The total “equivalent” magnetic dipole moment of

the filled aperture is the sum of (la) and (2a); the total

“equivalent” electric dipole moment of the filled aper-

ture is the sum of (lb) and (2 b). Thus, the following

expressions are obtained for the total “equivalent” mag-

netic and electric dipole moments:

—pofi = 5K@oz~~ + 3TZ2BO#fi (3a)

a = 6%D0 (3b)

where

B,l = /.4,(770 – mo)

DO+ = eoQ~o.

The quantity Q is a number greater than unity and ex-

presses the fact that the polarization increases the mag-

nitude of the electric dipole moment. The value of Q is

determined from experiment and the quantity PO – ~0

is determined from the theory of the anisotropic mag-

4 Bethe, footnote 2, see (18) and (25).

(4)

netization of a ferrite. This is considered briefly in the

Appendix. However, the result is that

Bolf = pZ1fHol + pz#Ho~

BoJ = p~l#Hoz + /J.mHo~

where

P22+ = I.%# = /.to(l – X21)

/Jlm# = — pml+ = — /.!iJxzm.

The magnetostatic field is applied in the n direction,

while the microwave field is applied in the plane normal

to ‘ii.

GENERAL COUPLING EXPRESSIONS

In this section, the expressions for the amplitudes of

the normal modes coupled by a window between two

waveguides is derived. Since this theory is well known,

the presentation is brief.

Silver6 gives the following expressions for the field

components of freely propagating modes in waveguides

of arbitrary but uniform cross section:

TE waves:

Hs = jH~z exp ( Tj8~z); Hag = Ka’(@p)-~.

Zt = l?=~ exp ( TjP.~); Eat = Vt+a x i=

Z?t = + Hat exp ( Tjf?.z); 77., = ,Ba(@p)-%#.. (5)

TM waves:

E. = ~ jE., exp ( T j~az); Ea. = ~a2pa–l@a

Et = % exp ( T ~p.z); % = Vt+a

77t = + Hat exp ( T-jf?.z); izat = C@-% x Vtcja. (6)

Also,

sPm = : S. = : ~a, X ~a, ~zds

Pab = ~.

The functions Z?.., Eat, E.,, ~a, are all real. Further,

/3. is the phase constant; w is the angular frequent y; p

and e are the magnetic and electric inductive capacities,

respectively; K is the eigenvalue of (V ~2+K.2) F = O,

where F is ti~ or 4. as the case may be; and U21.Le= Ka2

+&2. EXP (~d) time dependence is assumed and mks

units are used throughout. The subscripfs a and b in (5)

and (6) designate the pair of mode indices mn and

should not be confused with the transverse dimensions

of rectangular waveguides.

Also needed are expressions for the fields (5) and (6)

when the waveguide is shorted at an arbitrary location:

Short atz=d, –~~z~d:

H. = 2H.8 exp ( – j~.d) sin P.(z – d)

E, = 2jEaz exp (– j~ad) cos 8.(z – d)

Z, = – 2j77.~ exp ( –j~.a?) sin /3.(z – d)

77, = 2Z7Gt exp (–jf?.d) cos f?.(z – d). (7)

6 S. ,%lver, “Microwave Antenna Theory and Design, ” McGraw-
Hill Book Co., Inc., New York, N. Y., art. 7.3; 1949.
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Short at z= –d, –dSzs cc :

Hz = – 2H.. exp ( –j~ad) sin ~a(z + d)

E. = – 2jEaa exp ( –jp~d) cos P.(z + a?)

~i = 2jZt exp ( –ji3.d) sin 9.(2 + d)

77, = – 277., exp ( –j@ad) cos & (z + d). (8)

It has been shown by Bethel and by Silver8 that the

modal amplitudes of the fields set up in an infinite

waveguide by a window in the wall are the following:

2A.Sa = –
s

El X 772- iids (9)
w

2B.S. = –
J

~, X ~2~ . rids. (lo)
w

The + and – superscripts on the field ~Z indicate waves

going in the direction of positive or negative z, respec-

tively. The field ~1 is the electric field set up in the

guide by the window. The field ~Z is a normal mode

field of the waveguide when the window is absent. The

surface integral is over the window, and the set of axes

1, m, n are fixed in the aperture. Further, the 1 direction

is always parallel to the long dimension of the aperture,

the m direction is always parallel to its narrow dimen-

sion, and n points away from the source of excitation.

Eqs. (9) and (10) are also valid when the excited

waveguide is semi-infinite and when either side-window

or end-window coupling (iris coupling) is being con-

sidered. In either case, it is only necessary to obtain the

field ~2 in (9) and (10) from (7) or (8), rather than from

(5) or (6).

The integrals in (9) and (10) have been evaluated by

BetheT when the window is empty. When the window is

filled with a ferrite, they become

2A .S.

2B.Sa =
— jti( +3 TZ1BO$H21 + 3m2BomJH2m (11)

+ @Do?#E2*) .

The fields ~0# and ~# are defined in (3) and (4). The

upper signs in (11) refer to A.; the lower signs refer to

B.. For a circular window of radius r, ml= ~2 = (4/3)r3

and (P= (2/3)r3. For apertures of other shapes, fll al-

ways corresponds to an incident magnetic field parallel

to the long dimension of the aperture, while %2 refers to

the narrow dimension of the aperture. It should be noted

that ml and 31Z2are functions only of the shape of the

window and are not to be confused with the fields 1 and

2. For a specific application, the fields ~2, ~z will be

defined by one of the expressions (5)–(8); the fields ~0,

HO will be defined by one of the same expressions except

that the mode index a is replaced by b. Eq. (11) is also

valid when the waveguides are semi-infinite and for iris

coupling between waveguides.

~ Ibid., art. 9.10.
7 Bethe, footnote 2, see (51) and (55).

COUPLING THROUGH SIDE WINDOWS

In this section, the general expression (11) is evalu-

ated for two particular cases: 1) the axis of the primary

guide (source of excitation) is parallel to the axis of the

secondary guide (excited guide), and 2) the axis of the

primary guide is perpendicular to that of the secondary

guides The first device is designated as a parallel
couP1er, g and the second device as a perpendicular

coupler. The set of axes fixed in the primary waveguide

is denoted by ~, ~, (; the set of axes fixed in the second-

ary waveguide is denoted by x, y, z. As mentioned be-

fore the set of axes 1, m, n are fixed in the aperture. The

orientation of the three sets of axes is illustrated in

Fig. 1. However, m and z are made parallel for the two

Fig. l—Orientation of axes.

couplers under consideration, Also, the mode index a

applies to the secondary guide, and the mode index b

applies to the primary guide. Case A is defined as the

situation where identical rectangular waveguides are

joined on their broad sides, the TE1O mode is propagated,

and the window is centered.

s Both of these waveguide configurations were considered by A. D.
Berk and E. Strumwasser, “Ferrite directional couplers, ” PROC. IRE,
vol. 44, pp. 1439-1446; October, 1956. However, their work was based
on the theory of scattering by an obstacle in a waveguide. Further,
they considered only ferrite cylinders extending into both wave-
guides with the coupling holes located at positions of circular polar-
ization of the magnetic field. The theory presented in this paper is
also applicable to these ~ituations and is sufficiently different, it is
felt, to warrant a paper on these configurations. Such a paper is
nearing completion.

g This particular waveguide configuration was also studied by
R. W. Damon, “Magnetically controlled microwave directional
coupler, ” ~. A@pl. Phys., vol. 26, pp. 1281–1283; October, 1955. His
work is of a qualitative nature and considers a ferrite cylinder located
at the position of circular polarization of the magnetic field. Further-
more, his theory is ?Iso based upon an extension of Bethe’s coupling
theory. However, hls theory is not of a general nature but merely re-
places the magnetic dipole moment of the hole by the magnetic dipole
moment of the ferrite body in the hole.

It would seem that we conceived the idea of extending Bethe’s
coupling theory about the same time. The author originally felt that
Bethe’s method could be extended to treat the case of an anisotropic
ferrite filling the coupling hole (Inst. of Eng. Res., Progress Rep.
Ser. No. 60, Issue No. 7, Electronics Res. Lab,, Univ. of Calif.,
Berkeley, Calif., p. 11; January 15, 1955) and later developed such a
theory during the summer of 1955 (Progress Rep. Ser. No. 60, Issue
No. 10, p. 9; October 1.5, 1955),
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and Secondary Waveguides

B. are obtained from (1 1),

wher~ the fields ~z, ~z are specified in (.5) or (6). ‘The

fields DO#, ~0# are given in (3) and (4); the fields ~0, ~fi

are given by (1) or (2). This results in

2A.S.

2B.S.

= – j(d [( TmlHaJ#J# + jw2Ha*p..~#)Hbt + j( T3TZlHat#tm#

+ j3V&H.Z~~%#)HbZ + eO@QE.nEbn ], (12)

It should be noted that the transverse components of

the fields with the mode indices a and b have been left

in the aperture coordinates, since all that was specified

thus far is that m and z and ~ are parallel. However, once

the orientations of the ln, ~rl, and xy axes are prescribed,

one should insert the field components in their proper

coordinate systems. Therefore, if (5) is used in (1 2), the

following expression results for Case A:

2A J.

.= – ~u [TWl~’@’(ti’p’a’)-lpll~ + @a-2Q@]. (13)

2 Basa

In (13), use has been made of the fact that H.L = –H.z,

HL1 = –H~t, Ean =Ean, and Ebn =Eb,.

If a round coupling hole of diameter d and thickness t

is considered, (13) reduces to the following:

A as.

If %0# from (15) and DO from (3) are substituted into

(11) after using the proper field components from (1) or

(2), the following expression results:

2A S.

= —ju [j( + WLH6rHaZpZ$ — ~zH@,,,p,mw#)

2Bw$a

] (16)+ ~lHb$H. zpz~#+~zHbtHGzp~ zt+~o POE~*lEu,, .

With the field components in (16) given by (5), the

following expression results for Case A:

2.4 a.

= — @ [ T ~~l~z@z(~2p2a2)–*gz~# + wr2a-2@Q]. (17)

2B.Sa

For a round coupling hole of diameter d, (17) simplifies

to

A.

= –j-ird3(3abkC)-’F~[ Txz.+ I/Z(kQ/AO)2QFEFZ~-1]. (18)

B.

Perpendicular Coupler, Primary Wavegaide Semi-Inj&

nite, Secondary Waveguide I@inite

This situation is the same as the preceding case, ex-

cept that the fields HE, Hr, and Eq are given by (7) with

the mode index a replaced by b, instead of by (5) or (6).

Thus, for a short at z = d, – w <z <d, and window at

the origin:

.— jk exp ( –j~bd) ~ – ( T ~lH=lp@ + .iWgH.~,u~w~)Hb: cos fibd

B.S.
(19)

– [(~ ‘3TZIH=1PL$ – j3?7&HGz,u~$)Hbc – jeo(PQE..E5q] sin ~bd}.

A. Using the field values from (5) in (19), the following re-

= –jm~3(3abka)-’FH[~ (1 –x..) + l/2(Xg/Ao)2QF&H-’] (14)

where FE= FH =exp ~ —2irtX.-1 [1 — (&/~0)2]1~2 } ; A, is

different for FE and FM, 10 since the electric and mag-

netic fields (although below cutoff) in the window propa-

gate as different modes. It was assumed that the terms

FE and FH are not affected by the presence of the ma-

terial in the hole.

Perpendicular Cou@e~, Primary and Secondary

Waveguides Injinde

Expressions for A a and B. are again obtained from

(1 1), and the fields ~z, Hz are specified in (5) or (6).

However, the fields ~oi must be made proportional to

the proper fields in the primary waveguide. Thus,

10 C. G. hlontgomerv, ‘+Technique of Micro\vave Measurements,’
hIcGraw-Hill Book Co.: Inc., New York, N. Y., p. 862; 1947.

lation is obtained for Case A and flbd = qr, where q is an

integer:

For a round coupling hole of diameter d, (20) reduces to

EXPERIMENTAL RESULTS FOR SIDE-WINDOYV COUPLING

In the last section, the amplitudes of the mc,des

coupled by the parallel and perpendicular coupler were

evaluated. Here, the coupled power for Case A condi-

tions and for a round coupling hole is calculated. The

power coupled into the secondary waveguide by the

window is equal to the square of A. or E., since these

amplitudes have been derived for unit amplitude inci-

dent fields in the primary waveguide.

The coupled power for (14) becomes

w = c’, +- 10 log { [T(l – C’A)

+ 1! W40)’QF F~-l]’ + (C’B)2} (22)
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CO = 20 log [z-d2(3abh,)-’F~].
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Magnetostatlc field (kilo aersteds)

O?
I 2 3 4 5
I

The upper and lower signs refer to the mode coupled in

the same and opposite directions, respectively, as that

of the incident mode. The quantities A, B, and Cl are

defined in the Appendix. For d= O.1235”, t= O.020”,

FH = 0.555, and j= 9.350 kmc, the unperturbed mag-

netic coupling (CO) is — 55.3 db. Thus, (22) becomes

C/[* = – 55.3 + log ~ [T(I – C’A) + 0.8189Q]’

+ (C’l?)z} . (23)

When no magnetostatic field is applied, the ferrite is

isotropic, and C’ vanishes, Consequently, the factor Q

can be evaluated experimentally from the zero mag-

netostatic field expressions. The value used here in com-

paring theory and experiment will be an average value

rather than one which gives the best agreement. There-

fore, the resultant curves will not agree exactly at the

zero magnetostatic field point, but this is acceptable

since the interest here is in qualitative agreement.

Comparison of the theoretical expression (23) with

experimental results is offered in Fig. 2 for a Ferramic

A sphere. (Parameter \l, is proportional to the damping

constant and is defined in the Appendix.) According to

theory, the diagonal susceptibility is an even function of

the applied magnetostatic field. Since the experimental

curves for both directions of magnetostatic field were

the same within the limits of experimental error, only

the experimental curves for one direction of the applied

magnetostatic field is presented.

Magnetastafic field (Kilo esreteds)

Fig. 2—Forward and re~-erse coupling in parallel coupler,
Ferramic A sphere, both wa~-eguides infinite.

The effect on the reverse coupling of a variation in Q

is shown in Fig. 3 for a Ferramic A sphere. Note that an

increase in Q increases the initial coupling slightly and

also reduces the variation between the maximum values

of coupling. This is correct since an increase in Q corre-

sponds to an increase in the dielectric constant, which

in turn corresponds to an increase in electric coupling.

-30

z

– 40

Q= I.33 —.————
-50 -

-60

-70

Fi~. 3—Reverse coupling in parallel coupler as function of dielectric
properties of Ferramic A sphere, both waveguides infinite.

MagnetoStatic f ield (Kila cwsteds)
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Fig. 4—Reverse coupling in parallel coupler as function of saturation
magnetization of Ferramic A sphere, both waveguides infinite.

Fig. 4 shows the effect on the reverse coupling of a

variation in saturation magnetization. A reduction of

this parameter causes a reduction of the coupled mag-

netic field, thereby reducing the perturbing effect of the

ferrite,

The third parameter of the ferrite studied is the

damping constant. The behavior of the reverse coupling

for various reduced damping constants is shown in

Fig. 5. It should be remembered that the reduced damp-

ing constant is the ratio of the actual damping constant

to the magnetization (saturation magnetization here).

This parameter is the most critical of the three, as one

would expect in a resonance-type phenomenon. lNote that

a reduction of the damping constant causes an increase

of the perturbing effect of the ferrite.

The coupled power for (18) becomes

CL* = – 49.4+ 10 log [(+-W + 0.845Q)’

+ (EG)’] (24)

where d= O.1495 inch, t =0.020 inch, FH-O.617, f =9.350

kmc, and the unperturbed coupling (CO) is –49.4 db.
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The c[uantities EF and EG are defined in the Appendix

and are odd functions of the applied magnetostatic field.

This means that a reversal of the direction of the mag-

netostatic field results in an interchange of the forward

and reverse couplings: that is, C+(+) = C–(–) and

Magnetostotic field (Kilo oersteds)

0°
2 3 4 5

[

Q= 1.33
c’= .9045

-lo

-20i+”+-H-
-30

n
n I -“2sy-

AI=.05
,.,

-40 ,/

.— -—- XAl=. 10--..,

-50 +., ‘o ~
\. ..- -~

/.-=~—-

-60 v

-70 L I I 1

Fig. 5–-Reverse coupling in parallel coupler as function of reduced
dampilg constant of Ferramic A sphere, both waveguides infinite.

L!+(–) = C–( +), where, for instance, C+(–) indicates

the forward coupling for negative values of the applied

magnetostatic field. Comparison of theory and experi-

ment for positive values of the applied magnetostatic

field is illustrated in Fig. 6 for a Ferramic A sphere. The

agreement between theory and experiment is accepta-

ble, although it is felt that better quantitative agree-

ment can be obtained by choosing a smaller value for the

reduced damping constant.

The coupled power for (21) becomes

cL* = – 43.4 + 10 log [E’(F2 + G’)] (25)

where CO is 6 db larger because of the short in the

primary waveguide. The constants of the window are

the same as for (24). Since the short in the primary

waveguide is located so as to annul the electric coupling,

there is no coupling into the secondary waveguide until

the ferrite becomes anisotropic. Note in Fig. 7, for Fer-

roxcube 4-A, that a small value of the magnetostatic

field is sufficient to increase the coupling to the value

it wou [d normally be when only the electric field couples.

Agreement is quite satisfactory except for small values

of applied magnetostatic field. One sees very clearly

that the theoretical curve predicts too large a coupling

initially. This is probably caused by the fact that the

actual magnetization has been replaced by the satura-

tion magnetization. The agreement at resonance could

also be improved by using a smaller reduced damping

constant.

Although the theory derived is valid only when the

coupling aperture is completely filled with a material,

it is of interest to examine experimentally the effect on

Magnetostatic field (kila aersteds)

0°
I 2 3 4 6

E= .7598
+“

nExperiment

Theory

-20 —— c+(.)
n
Q --- C-(+

H

-30 —

,/ //..

-40

-- .- Q-

-50 6

Fig. 6—Forward and reverse coupling in perpendicular coupler,
Ferramic A sphere, both waveguides i nfiuite.

Mognetostatic field (KIlo oersteds)
I 2
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‘ “cl‘~d”?
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Fig. 7—Reverse coupling in perpendicular coupler as function of re-
duced camping constant of Ferroxcube 4-A sphere, primary wave-
guide semi-infinite, secondary waveguide infinite.

the magnetic coupling of partially filling the aperture

with a ferrite. In this case, shorts were used to annul

the electric coupling. However, the electric coupling could

also be excluded by properly choosing the locati~m of

the window. For comparison purposes, the magnetic

coupling curves for a spherical, a rectangular, and a

disk-shaped Ferroxcube 4-A sample are shown in Fig. 8.

The spherical and disk-shaped samples were placed in

a round aperture; the rectangular sample was placed

in a rectangular aperture with the long dimension

parallel to the axis of the primary waveguide. These

were all obtained with the perpendicular coupler and for

Case A conditions. The curves for the rectangular and

disk-shaped samples are very similar. However, the

curve for the spherical sample has a much larger ampli-

tude at resonance than either of the other curves, and

its resonance also occurs for a much smaller value of

applied magnetostatic field.
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Magnetostatic field (Kila aemteds)

o I 2 3 4 5 6 7

-20 — .0965” dia. sphere in .151” dia. -
.020” thick aperture

. L

-30 /
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Fig. 8—Effect on magnetic coupling in perpendicular coupler by
partially filling aperture with various shaped Ferroxcube 4-A sam-
ples. ❑ 0.0965 inch dia. sphere in 0.151 inch dia., 0.020 inch thick
aperture. A 0.250 inch XO.075 inch XO.020 inch thick sample in
aperture of same size and 0.010 inch thick. O 0.100 inch dia.,
0.021 inch thick disk in 0.151 inch dia., 0.020 inch thick aperture.

CONCLUSION

The theory presented is satisfactory for small samples,

although the sample sizes used here are near the upper

size limit for these materials. For materials with smaller

losses, it would be necessary to use even smaller sample

sizes in order to avoid dimensional effects.

The theory of the magnetization of the ferrite is the

weak link in this coupling theory. Consequently, any

effort to apply this coupling theory to larger samples

would require a proper modification of the magnetiza-

tion expressions. It is felt that the dimensional effects

in the sample enter in two ways. The first occurs because

of the inhomogeneity in magnetization and can be ac-

counted for by properly choosing the constants of the

ferrite. In other words, we can choose values for the con-

stants in such a manner as to obtain good agreement be-

tween theory and experiment but these values will not

necessarily y be the true constants of the material. The

other effect occurs when the sample becomes electrically

large and acts as a resonator. The present coupling the-

ory does not account for this.

APPENDIX

TENSOR MAGNETIZATION OF A FERRITE

The purpose here is to evaluate the susceptibilities

defined in (4). These susceptibilities result when a fer-

rite is made anisotropic by the application of a magneto-

static field in the n direction. Although this has been

done by several authors, 11,12 part of the work is repeated

here for continuity. The form followed is that given by

13eljers.11

II H. G. Beljers, “Measurements on gyromagnetic resonance of a
ferrite using cavity resonators, ” Pkys%a, vol. 14, pp. 629-641; Feb-
rurary, 1949.

lZ C. L. Hogan, “The microwave gyrator,” Bell SyS. Teck. J,, VO1.
31, pp. 1–31; January, 1952.

The fundamental equation for the magnetization, ~,

is the following:

@y-l == g x ~ – ~(~ – ~. ~&2~) (26)

where v = — ge/2m (the magnetomechanical ratio, a

negative quantity for an electron); e and w are the elec-

tron charge and mass, respectively; g is the spectro-

scopic splitting factor; X is a damping constant; and

B = NO (~+ ~). The damping constant can be intro-

duced in different manners, but the two commonly used

forms both give identical results for the order of ap-

proximation used here. 1$

For the problem under consideration, the following is

chosen:

Ht = kj – (fl’1 – l/3)Ml

H. = h. – (Nm – l/3)M.

H. = H – (N. – l/3)M

where the Ni’s are the demagnetizing factors, the quan-

tities hl and hm are the applied microwave magnetic

fields, and His the applied magnetostatic field,

Consistent with the usual assumption, the microwave

magnetizations are as follows:

Ml = ‘yML-’[lZi{po’~(l + x,’) [H + M(NW – NJ]

– jLyL& } – jtipokm]

itfn = ~ML-’[hm{~02y(l + W) [H + M(NZ – NJ]

– jqd, ] + jcop,kl] (27)

where

L = – & + ~o’y’(l + h,’) [H + ~(f~z – Nm]

. [H + .M(N. – Nm) ] – 2jGJpo7k@

– jup,~hlill(lvl – N. - 2Nn) ,

Al= A/ill is a reduced damping constant, and M is the

saturation magnetization in the n direction. When the

ferrite sample is spherical, the magnetizations simplify

considerably to the following:

Ml = X2JZ2 + Xlmhm

~. = xmtht + Xmmkra (28)

where

xl; = Xttr + jxw

Xlm = Xlm, + jxlm<.

For computational purposes, the following substitutions

are made:

~~=–y

.X = #o#Hw-yl + xl’) 1/’. (29)

13 \Ve introduce Our- damping constant according to Landau and
Lifschitz (see Beljers, op. cit.).
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Fig. 9—Diagonal susceptibility of small ferrite sphere as
function of normalized applied magnetostatic field.

Thus, the components of the susceptibilities become

X12, = C’A

xtt, == C’B

x1., = EF

~imi = EG

where

C’ = -y’pOMCIJ-l(l + X12) 1/2

.4 = a/b

B = – a’/b

E = y’poMrrl

F = c/b

G = – J/b

a = x{ *2 – [1 – 2A12(1 + XI’)–’] }

a’ = Xl(xz + 1)(1 + X12)–1f2

C’=l— X2

c = 2AIX(1 + X12)–1’2

b = X4 – 2,P[1 – 2k1’(1 + k,’)-’]+ 1

(30)

Note also that x~~ = XZZ, and xz~ = –x~t.

In most ferrite work the susceptibilities are defined so

that

Ml = Xht – jKhna

‘!TlI=s-

-6~--#o
1.6 .

Normalized aDDiied magnetostatic iteid (x)

Fig 10—Nondiagonal susceptibility of small ferrite sphere as
function of normalized applied magnetostatic field.

where

x = -/ – jxll

K = K’ – jK”.

LTsing this notation,

# = C’A

x“ = – crB

K’=.-. EG

xl! = – EF. (32)

For the simple case of no damping, the imaginary parts

of both x and K vanish. Eq. (33) then reduces to the

one that is characteristic of a gyrotropic medium.

In order to understand better the behavior of the

permeability of the ferrite when it is anisotropic, several

families of curves of xzz and XZ~ are plotted as a function

of x, with M and Al as parameters; Fig. 9 is a plo[. of

xil vs x for X, =0.05 and Al =0.10. Similarly, Fig. 10

is a plot of XZfi vs x for L =0.05 and Al =0.10. In both

figures, the coefficients C’ and E were set equal to unity.

It should also be noted that xu is an even function of the

applied magnetostatic field, whereas XZ., is an odd func-

tion of the applied magnetostatic field.

ACKNOWLEDGMENT

I would like to thank Dr. D. J. Angelak,os for his aid

with the theoretical aspects of this work and Seymon

Mm = jKhz + Xhm (31) Hersh for his help with the manuscript.


